This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://judge.yosupo.jp/problem/shortest_path"
#include <iostream>
#include <algorithm>
#include <map>
#include <set>
#include <queue>
#include <stack>
#include <numeric>
#include <bitset>
#include <cmath>
static const int MOD = 1000000007;
using ll = long long;
using uint = unsigned;
using ull = unsigned long long;
using namespace std;
template<class T> constexpr T INF = ::numeric_limits<T>::max()/32*15+208;
#include "../graph/dijkstra.cpp"
int main() {
int n, m, s, t;
cin >> n >> m >> s >> t;
vector<vector<edge<ll>>> G(n), Ginv(n);
for (int i = 0; i < m; ++i) {
int a, b, c;
scanf("%d %d %d", &a, &b, &c);
G[a].emplace_back(b, c);
Ginv[b].emplace_back(a, c);
}
auto d = dijkstra(s, G);
if(d[t] == INF<ll>){
puts("-1");
return 0;
}
vector<int> ans{t};
vector<int> visited(n);
visited[t] = 1;
while(ans.back() != s){
for (auto &&i : Ginv[ans.back()]) {
if(d[i.to]+i.cost == d[ans.back()] && !visited[i.to]){
ans.emplace_back(i.to);
visited[i.to] = 1;
break;
}
}
}
printf("%lld %lu\n", d[t], ans.size()-1);
for (int i = (int)ans.size()-1; i > 0; --i) {
printf("%d %d\n", ans[i], ans[i-1]);
}
return 0;
}
#line 1 "test/yosupo_shortest_path.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/shortest_path"
#include <iostream>
#include <algorithm>
#include <map>
#include <set>
#include <queue>
#include <stack>
#include <numeric>
#include <bitset>
#include <cmath>
static const int MOD = 1000000007;
using ll = long long;
using uint = unsigned;
using ull = unsigned long long;
using namespace std;
template<class T> constexpr T INF = ::numeric_limits<T>::max()/32*15+208;
#line 1 "graph/dijkstra.cpp"
template <typename T>
struct edge {
int from, to; T cost;
edge(int to, T cost) : from(-1), to(to), cost(cost) {}
edge(int from, int to, T cost) : from(from), to(to), cost(cost) {}
};
template <typename T>
vector<T> dijkstra(int s,vector<vector<edge<T>>> &G){
auto n = G.size();
vector<T> d(n, INF<T>);
priority_queue<pair<T, int>,vector<pair<T, int>>,greater<>> Q;
d[s] = 0;
Q.emplace(0, s);
while(!Q.empty()){
T cost; int i;
tie(cost, i) = Q.top(); Q.pop();
if(d[i] < cost) continue;
for (auto &&e : G[i]) {
auto cost2 = cost + e.cost;
if(d[e.to] <= cost2) continue;
d[e.to] = cost2;
Q.emplace(d[e.to], e.to);
}
}
return d;
}
/**
* @brief Dijkstra法
* @docs _md/dijkstra.md
*/
#line 22 "test/yosupo_shortest_path.test.cpp"
int main() {
int n, m, s, t;
cin >> n >> m >> s >> t;
vector<vector<edge<ll>>> G(n), Ginv(n);
for (int i = 0; i < m; ++i) {
int a, b, c;
scanf("%d %d %d", &a, &b, &c);
G[a].emplace_back(b, c);
Ginv[b].emplace_back(a, c);
}
auto d = dijkstra(s, G);
if(d[t] == INF<ll>){
puts("-1");
return 0;
}
vector<int> ans{t};
vector<int> visited(n);
visited[t] = 1;
while(ans.back() != s){
for (auto &&i : Ginv[ans.back()]) {
if(d[i.to]+i.cost == d[ans.back()] && !visited[i.to]){
ans.emplace_back(i.to);
visited[i.to] = 1;
break;
}
}
}
printf("%lld %lu\n", d[t], ans.size()-1);
for (int i = (int)ans.size()-1; i > 0; --i) {
printf("%d %d\n", ans[i], ans[i-1]);
}
return 0;
}