This documentation is automatically generated by online-judge-tools/verification-helper
単一始点最短路を求める。負辺があると正しく動作しない。 $O(V \log E)$
template <typename T>
struct edge {
int from, to; T cost;
edge(int to, T cost) : from(-1), to(to), cost(cost) {}
edge(int from, int to, T cost) : from(from), to(to), cost(cost) {}
};
template <typename T>
vector<T> dijkstra(int s,vector<vector<edge<T>>> &G){
auto n = G.size();
vector<T> d(n, INF<T>);
priority_queue<pair<T, int>,vector<pair<T, int>>,greater<>> Q;
d[s] = 0;
Q.emplace(0, s);
while(!Q.empty()){
T cost; int i;
tie(cost, i) = Q.top(); Q.pop();
if(d[i] < cost) continue;
for (auto &&e : G[i]) {
auto cost2 = cost + e.cost;
if(d[e.to] <= cost2) continue;
d[e.to] = cost2;
Q.emplace(d[e.to], e.to);
}
}
return d;
}
/**
* @brief Dijkstra法
* @docs _md/dijkstra.md
*/
#line 1 "graph/dijkstra.cpp"
template <typename T>
struct edge {
int from, to; T cost;
edge(int to, T cost) : from(-1), to(to), cost(cost) {}
edge(int from, int to, T cost) : from(from), to(to), cost(cost) {}
};
template <typename T>
vector<T> dijkstra(int s,vector<vector<edge<T>>> &G){
auto n = G.size();
vector<T> d(n, INF<T>);
priority_queue<pair<T, int>,vector<pair<T, int>>,greater<>> Q;
d[s] = 0;
Q.emplace(0, s);
while(!Q.empty()){
T cost; int i;
tie(cost, i) = Q.top(); Q.pop();
if(d[i] < cost) continue;
for (auto &&e : G[i]) {
auto cost2 = cost + e.cost;
if(d[e.to] <= cost2) continue;
d[e.to] = cost2;
Q.emplace(d[e.to], e.to);
}
}
return d;
}
/**
* @brief Dijkstra法
* @docs _md/dijkstra.md
*/