This documentation is automatically generated by online-judge-tools/verification-helper
#include "../datastructure/sparsetable.cpp"
struct F {
using T = pair<int, int>;
static T f(T a, T b) { return min(a, b); }
static T e() { return T{INF<int>, -1}; }
};
class AuxTree {
SparseTable<F> table;
void dfs_euler(int v, int p, int d, int &k, int &l){
id[v] = k;
vs[k] = v;
depth[k++] = d;
dep[v] = d;
fi[v] = l++;
for (auto &&u : G[v]) {
if(u != p){
dfs_euler(u, v, d+1, k, l);
vs[k] = v;
depth[k++] = d;
}
}
}
public:
int n;
vector<vector<int>> G, out;
vector<int> vs, depth, dep, id, fi;
explicit AuxTree(int n) : n(n), G(n), out(n), vs(2*n-1), depth(2*n-1), dep(n), id(n), fi(n), table() {};
void add_edge(int a, int b){
G[a].emplace_back(b);
G[b].emplace_back(a);
}
void eulertour(int root) {
int k = 0, l = 0;
dfs_euler(root, -1, 0, k, l);
}
void buildLCA(){
eulertour(0);
vector<pair<int, int>> v(2*n-1);
for (int i = 0; i < 2*n-1; ++i) {
v[i] = make_pair(depth[i], vs[i]);
}
table.build(v);
}
void make(vector<int> &v){
sort(v.begin(),v.end(), [&](int a, int b){ return fi[a] < fi[b]; });
v.erase(unique(v.begin(), v.end()), v.end());
int k = v.size();
stack<int> s;
s.emplace(v.front());
for (int i = 0; i+1 < k; ++i) {
int w = LCA(v[i], v[i+1]);
if(w != v[i]){
int u = s.top(); s.pop();
while(!s.empty() && dep[w] < dep[s.top()]){
out[s.top()].emplace_back(u);
out[u].emplace_back(s.top());
u = s.top(); s.pop();
}
if(s.empty() || s.top() != w){
s.emplace(w);
v.emplace_back(w);
}
out[w].emplace_back(u);
out[u].emplace_back(w);
}
s.emplace(v[i+1]);
}
while(s.size() > 1){
int u = s.top(); s.pop();
out[s.top()].emplace_back(u);
out[u].emplace_back(s.top());
}
}
void clear(vector<int> &v){
for (auto &&i : v) {
out[i].clear();
out[i].shrink_to_fit();
}
}
int LCA(int u, int v){
if(id[u] > id[v]) swap(u, v);
return table.query(id[u], id[v]+1).second;
}
int distance(int u, int v){
return dep[u]+dep[v]-2*dep[LCA(u, v)];
}
};
#line 1 "datastructure/sparsetable.cpp"
template <class F>
struct SparseTable {
using T = typename F::T;
vector<vector<T>> table;
vector<int> u;
SparseTable() = default;
explicit SparseTable(const vector<T> &v){ build(v); }
void build(const vector<T> &v){
int n = v.size(), m = 1;
while((1<<m) <= n) m++;
table.assign(m, vector<T>(n));
u.assign(n+1, 0);
for (int i = 2; i <= n; ++i) {
u[i] = u[i>>1] + 1;
}
for (int i = 0; i < n; ++i) {
table[0][i] = v[i];
}
for (int i = 1; i < m; ++i) {
int x = (1<<(i-1));
for (int j = 0; j < n; ++j) {
table[i][j] = F::f(table[i-1][j], table[i-1][min(j+x, n-1)]);
}
}
}
T query(int a, int b){
int l = b-a;
return F::f(table[u[l]][a], table[u[l]][b-(1<<u[l])]);
}
};
#line 2 "tree/auxtree.cpp"
struct F {
using T = pair<int, int>;
static T f(T a, T b) { return min(a, b); }
static T e() { return T{INF<int>, -1}; }
};
class AuxTree {
SparseTable<F> table;
void dfs_euler(int v, int p, int d, int &k, int &l){
id[v] = k;
vs[k] = v;
depth[k++] = d;
dep[v] = d;
fi[v] = l++;
for (auto &&u : G[v]) {
if(u != p){
dfs_euler(u, v, d+1, k, l);
vs[k] = v;
depth[k++] = d;
}
}
}
public:
int n;
vector<vector<int>> G, out;
vector<int> vs, depth, dep, id, fi;
explicit AuxTree(int n) : n(n), G(n), out(n), vs(2*n-1), depth(2*n-1), dep(n), id(n), fi(n), table() {};
void add_edge(int a, int b){
G[a].emplace_back(b);
G[b].emplace_back(a);
}
void eulertour(int root) {
int k = 0, l = 0;
dfs_euler(root, -1, 0, k, l);
}
void buildLCA(){
eulertour(0);
vector<pair<int, int>> v(2*n-1);
for (int i = 0; i < 2*n-1; ++i) {
v[i] = make_pair(depth[i], vs[i]);
}
table.build(v);
}
void make(vector<int> &v){
sort(v.begin(),v.end(), [&](int a, int b){ return fi[a] < fi[b]; });
v.erase(unique(v.begin(), v.end()), v.end());
int k = v.size();
stack<int> s;
s.emplace(v.front());
for (int i = 0; i+1 < k; ++i) {
int w = LCA(v[i], v[i+1]);
if(w != v[i]){
int u = s.top(); s.pop();
while(!s.empty() && dep[w] < dep[s.top()]){
out[s.top()].emplace_back(u);
out[u].emplace_back(s.top());
u = s.top(); s.pop();
}
if(s.empty() || s.top() != w){
s.emplace(w);
v.emplace_back(w);
}
out[w].emplace_back(u);
out[u].emplace_back(w);
}
s.emplace(v[i+1]);
}
while(s.size() > 1){
int u = s.top(); s.pop();
out[s.top()].emplace_back(u);
out[u].emplace_back(s.top());
}
}
void clear(vector<int> &v){
for (auto &&i : v) {
out[i].clear();
out[i].shrink_to_fit();
}
}
int LCA(int u, int v){
if(id[u] > id[v]) swap(u, v);
return table.query(id[u], id[v]+1).second;
}
int distance(int u, int v){
return dep[u]+dep[v]-2*dep[LCA(u, v)];
}
};