This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://judge.yosupo.jp/problem/sum_of_totient_function"
#include <iostream>
#include <algorithm>
#include <map>
#include <set>
#include <queue>
#include <stack>
#include <numeric>
#include <bitset>
#include <cmath>
static const int MOD = 998244353;
using ll = long long;
using uint = unsigned;
using ull = unsigned long long;
using namespace std;
template<class T> constexpr T INF = ::numeric_limits<T>::max() / 32 * 15 + 208;
#include "../util/modint.cpp"
int main() {
ll n;
cin >> n;
const ll k = 20000000; // 20000000
vector<int> dp(k+1);
iota(dp.begin(),dp.end(), 0);
for (int i = 2; i <= k; ++i) {
if(dp[i] != i) continue;
for (int j = i; j <= k; j += i) {
dp[j] = dp[j]/i*(i-1);
}
}
vector<mint> a(k+1);
for (int i = 0; i < k; ++i) {
a[i+1] = a[i] + dp[i+1];
}
vector<mint> memo(n/k+1);
vector<bool> calced(n/k+1);
mint pp = mint(2).inv();
auto rec = [&](ll x, auto &&f) -> mint {
if(x <= k) return a[x];
if(calced[n/x]) return memo[n/x];
auto res = mint(x)*mint(x+1)*pp;
for (ll i = 2; i <= x; ++i) {
ll j = x/i, newi = (i > j ? x/j : i);
res -= mint(newi-i+1)*f(x/i, f);
i = newi;
}
return calced[n/x] = 1, memo[n/x] = res;
};
cout << rec(n, rec).val << "\n";
return 0;
}
#line 1 "test/yosupo_sum_of_totient.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/sum_of_totient_function"
#include <iostream>
#include <algorithm>
#include <map>
#include <set>
#include <queue>
#include <stack>
#include <numeric>
#include <bitset>
#include <cmath>
static const int MOD = 998244353;
using ll = long long;
using uint = unsigned;
using ull = unsigned long long;
using namespace std;
template<class T> constexpr T INF = ::numeric_limits<T>::max() / 32 * 15 + 208;
#line 1 "util/modint.cpp"
template <uint M>
struct modint {
uint val;
public:
static modint raw(int v) { modint x; x.val = v; return x; }
modint() : val(0) {}
template <class T>
modint(T v) { ll x = (ll)(v%(ll)(M)); if (x < 0) x += M; val = uint(x); }
modint(bool v) { val = ((unsigned int)(v) % M); }
modint& operator++() { val++; if (val == M) val = 0; return *this; }
modint& operator--() { if (val == 0) val = M; val--; return *this; }
modint operator++(int) { modint result = *this; ++*this; return result; }
modint operator--(int) { modint result = *this; --*this; return result; }
modint& operator+=(const modint& b) { val += b.val; if (val >= M) val -= M; return *this; }
modint& operator-=(const modint& b) { val -= b.val; if (val >= M) val += M; return *this; }
modint& operator*=(const modint& b) { ull z = val; z *= b.val; val = (uint)(z % M); return *this; }
modint& operator/=(const modint& b) { return *this = *this * b.inv(); }
modint operator+() const { return *this; }
modint operator-() const { return modint() - *this; }
modint pow(long long n) const { modint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; }
modint inv() const { return pow(M-2); }
friend modint operator+(const modint& a, const modint& b) { return modint(a) += b; }
friend modint operator-(const modint& a, const modint& b) { return modint(a) -= b; }
friend modint operator*(const modint& a, const modint& b) { return modint(a) *= b; }
friend modint operator/(const modint& a, const modint& b) { return modint(a) /= b; }
friend bool operator==(const modint& a, const modint& b) { return a.val == b.val; }
friend bool operator!=(const modint& a, const modint& b) { return a.val != b.val; }
};
using mint = modint<MOD>;
/**
* @brief modint(固定MOD)
* @docs _md/modint.md
*/
#line 21 "test/yosupo_sum_of_totient.test.cpp"
int main() {
ll n;
cin >> n;
const ll k = 20000000; // 20000000
vector<int> dp(k+1);
iota(dp.begin(),dp.end(), 0);
for (int i = 2; i <= k; ++i) {
if(dp[i] != i) continue;
for (int j = i; j <= k; j += i) {
dp[j] = dp[j]/i*(i-1);
}
}
vector<mint> a(k+1);
for (int i = 0; i < k; ++i) {
a[i+1] = a[i] + dp[i+1];
}
vector<mint> memo(n/k+1);
vector<bool> calced(n/k+1);
mint pp = mint(2).inv();
auto rec = [&](ll x, auto &&f) -> mint {
if(x <= k) return a[x];
if(calced[n/x]) return memo[n/x];
auto res = mint(x)*mint(x+1)*pp;
for (ll i = 2; i <= x; ++i) {
ll j = x/i, newi = (i > j ? x/j : i);
res -= mint(newi-i+1)*f(x/i, f);
i = newi;
}
return calced[n/x] = 1, memo[n/x] = res;
};
cout << rec(n, rec).val << "\n";
return 0;
}