This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=0399"
#include <iostream>
#include <algorithm>
#include <map>
#include <set>
#include <queue>
#include <stack>
#include <numeric>
#include <bitset>
#include <cmath>
static const int MOD = 1000000007;
using ll = long long;
using uint = unsigned;
using ull = unsigned long long;
using namespace std;
template<class T> constexpr T INF = ::numeric_limits<T>::max()/32*15+208;
#include "../util/modint.cpp"
#include "../math/squarematrix.cpp"
struct SemiRing {
using T = mint;
static inline T mul(T x, T y){ return x * y; }
static inline void add(T &x, T y){ x += y; }
static inline T one(){ return 1; }
static inline T zero(){ return 0; }
};
using ar = array<SemiRing::T, 101>;
using mat = SquareMatrix<SemiRing, 101>;
ar x;
mat A;
int main() {
int n, m; ll d;
cin >> n >> m >> d;
vector<int> s(n), t(n), f(m);
for (auto &&i : s) scanf("%d", &i);
for (auto &&i : t) scanf("%d", &i);
for (auto &&i : f) scanf("%d", &i);
A[0][0] = 1;
for (int i = 0; i < n; ++i) x[i+1] = s[i], A[i+1][0] = t[i], A[i+1][(i+n-1)%n+1] = 1;
for (int i = 0; i < m; ++i) x[n+i+1] = f[i], A[n+i+1][(i+m-1)%m+n+1] = 1;
A[n+1][n] = 1;
A = A.pow(d);
cout << (x*A)[0].val << "\n";
return 0;
}
#line 1 "test/aoj0399.test.cpp"
#define PROBLEM "http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=0399"
#include <iostream>
#include <algorithm>
#include <map>
#include <set>
#include <queue>
#include <stack>
#include <numeric>
#include <bitset>
#include <cmath>
static const int MOD = 1000000007;
using ll = long long;
using uint = unsigned;
using ull = unsigned long long;
using namespace std;
template<class T> constexpr T INF = ::numeric_limits<T>::max()/32*15+208;
#line 1 "util/modint.cpp"
template <uint M>
struct modint {
uint val;
public:
static modint raw(int v) { modint x; x.val = v; return x; }
modint() : val(0) {}
template <class T>
modint(T v) { ll x = (ll)(v%(ll)(M)); if (x < 0) x += M; val = uint(x); }
modint(bool v) { val = ((unsigned int)(v) % M); }
modint& operator++() { val++; if (val == M) val = 0; return *this; }
modint& operator--() { if (val == 0) val = M; val--; return *this; }
modint operator++(int) { modint result = *this; ++*this; return result; }
modint operator--(int) { modint result = *this; --*this; return result; }
modint& operator+=(const modint& b) { val += b.val; if (val >= M) val -= M; return *this; }
modint& operator-=(const modint& b) { val -= b.val; if (val >= M) val += M; return *this; }
modint& operator*=(const modint& b) { ull z = val; z *= b.val; val = (uint)(z % M); return *this; }
modint& operator/=(const modint& b) { return *this = *this * b.inv(); }
modint operator+() const { return *this; }
modint operator-() const { return modint() - *this; }
modint pow(long long n) const { modint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; }
modint inv() const { return pow(M-2); }
friend modint operator+(const modint& a, const modint& b) { return modint(a) += b; }
friend modint operator-(const modint& a, const modint& b) { return modint(a) -= b; }
friend modint operator*(const modint& a, const modint& b) { return modint(a) *= b; }
friend modint operator/(const modint& a, const modint& b) { return modint(a) /= b; }
friend bool operator==(const modint& a, const modint& b) { return a.val == b.val; }
friend bool operator!=(const modint& a, const modint& b) { return a.val != b.val; }
};
using mint = modint<MOD>;
/**
* @brief modint(固定MOD)
* @docs _md/modint.md
*/
#line 21 "test/aoj0399.test.cpp"
#line 1 "math/squarematrix.cpp"
template<class H, size_t SIZE>
struct SquareMatrix {
using T = typename H::T;
using ar = array<T, SIZE>;
using mat = array<ar, SIZE>;
mat A;
SquareMatrix() {
for (int i = 0; i < SIZE; ++i) {
for (int j = 0; j < SIZE; ++j) {
A[i][j] = H::zero();
}
}
}
static SquareMatrix I(){
SquareMatrix X;
for (int i = 0; i < SIZE; ++i) {
for (int j = 0; j < SIZE; ++j) {
if(i == j) X[i][j] = H::one();
else X[i][j] = H::zero();
}
}
return X;
}
friend ar operator*=(ar &x, const SquareMatrix &Y) {
ar ans;
fill(begin(ans), end(ans), mint(0));
for (int i = 0; i < SIZE; ++i) {
for (int j = 0; j < SIZE; ++j) {
H::add(ans[j], H::mul(x[i], Y[i][j]));
}
}
x.swap(ans);
return x;
}
friend ar operator*(ar x, const SquareMatrix &Y) { return x *= Y; }
inline const ar &operator[](int k) const{ return (A.at(k)); }
inline ar &operator[](int k) { return (A.at(k)); }
SquareMatrix &operator+= (const SquareMatrix &B){
for (int i = 0; i < SIZE; ++i) {
for (int j = 0; j < SIZE; ++j) {
H::add((*this)[i][j], B[i][j]);
}
}
return (*this);
}
SquareMatrix &operator-= (const SquareMatrix &B){
for (int i = 0; i < SIZE; ++i) {
for (int j = 0; j < SIZE; ++j) {
H::add((*this)[i][j], -B[i][j]);
}
}
return (*this);
}
SquareMatrix &operator*=(const SquareMatrix &B) {
SquareMatrix C{};
for (int i = 0; i < SIZE; ++i) {
for (int k = 0; k < SIZE; ++k) {
for (int j = 0; j < SIZE; ++j) {
H::add(C[i][j], H::mul((*this)[i][k], B[k][j]));
}
}
}
A.swap(C.A);
return (*this);
}
SquareMatrix pow(ll n) const {
SquareMatrix a = (*this), res = I();
while(n > 0){
if(n & 1) res *= a;
a *= a;
n >>= 1;
}
return res;
}
SquareMatrix operator+(const SquareMatrix &B) const {return SquareMatrix(*this) += B;}
SquareMatrix operator-(const SquareMatrix &B) const {return SquareMatrix(*this) -= B;}
SquareMatrix operator*(const SquareMatrix &B) const {return SquareMatrix(*this) *= B;}
};
#line 23 "test/aoj0399.test.cpp"
struct SemiRing {
using T = mint;
static inline T mul(T x, T y){ return x * y; }
static inline void add(T &x, T y){ x += y; }
static inline T one(){ return 1; }
static inline T zero(){ return 0; }
};
using ar = array<SemiRing::T, 101>;
using mat = SquareMatrix<SemiRing, 101>;
ar x;
mat A;
int main() {
int n, m; ll d;
cin >> n >> m >> d;
vector<int> s(n), t(n), f(m);
for (auto &&i : s) scanf("%d", &i);
for (auto &&i : t) scanf("%d", &i);
for (auto &&i : f) scanf("%d", &i);
A[0][0] = 1;
for (int i = 0; i < n; ++i) x[i+1] = s[i], A[i+1][0] = t[i], A[i+1][(i+n-1)%n+1] = 1;
for (int i = 0; i < m; ++i) x[n+i+1] = f[i], A[n+i+1][(i+m-1)%m+n+1] = 1;
A[n+1][n] = 1;
A = A.pow(d);
cout << (x*A)[0].val << "\n";
return 0;
}