This documentation is automatically generated by online-judge-tools/verification-helper
using u128 = __uint128_t;
struct mod64 {
ull n;
static ull mod, inv, r2;
mod64() : n(0) {}
mod64(ull x) : n(init(x)) {}
static ull init(ull w) { return reduce(u128(w) * r2); }
static void set_mod(ull m) {
mod = inv = m;
for (int i = 0; i < 5; ++i) inv *= 2 - inv * m;
r2 = -u128(m) % m;
}
static ull reduce(u128 x) {
ull y = ull(x >> 64) - ull((u128(ull(x) * inv) * mod) >> 64);
return ll(y) < 0 ? y + mod : y;
};
mod64& operator+=(mod64 x) { n += x.n - mod; if(ll(n) < 0) n += mod; return *this; }
mod64 operator+(mod64 x) const { return mod64(*this) += x; }
mod64& operator*=(mod64 x) { n = reduce(u128(n) * x.n); return *this; }
mod64 operator*(mod64 x) const { return mod64(*this) *= x; }
ull val() const { return reduce(n); }
};
ull mod64::mod, mod64::inv, mod64::r2;
bool suspect(ull a, ull s, ull d, ull n){
if(mod64::mod != n) mod64::set_mod(n);
mod64 x(1), xx(a), one(x), minusone(n-1);
while(d > 0){
if(d&1) x = x * xx;
xx = xx * xx;
d >>= 1;
}
if (x.n == one.n) return true;
for (int r = 0; r < s; ++r) {
if(x.n == minusone.n) return true;
x = x * x;
}
return false;
}
template<class T>
bool miller_rabin(T n){
if (n <= 1 || (n > 2 && n % 2 == 0)) return false;
ull d = n - 1, s = 0;
while (!(d&1)) {++s; d >>= 1;}
vector<uint64_t> v = {2, 325, 9375, 28178, 450775, 9780504, 1795265022};
if(n < 4759123141LL) v = {2, 7, 61};
for (auto &&p : v) {
if(p >= n) break;
if(!suspect(p, s, d, n)) return false;
}
return true;
}
#line 1 "math/miller_rabin_fast.cpp"
using u128 = __uint128_t;
struct mod64 {
ull n;
static ull mod, inv, r2;
mod64() : n(0) {}
mod64(ull x) : n(init(x)) {}
static ull init(ull w) { return reduce(u128(w) * r2); }
static void set_mod(ull m) {
mod = inv = m;
for (int i = 0; i < 5; ++i) inv *= 2 - inv * m;
r2 = -u128(m) % m;
}
static ull reduce(u128 x) {
ull y = ull(x >> 64) - ull((u128(ull(x) * inv) * mod) >> 64);
return ll(y) < 0 ? y + mod : y;
};
mod64& operator+=(mod64 x) { n += x.n - mod; if(ll(n) < 0) n += mod; return *this; }
mod64 operator+(mod64 x) const { return mod64(*this) += x; }
mod64& operator*=(mod64 x) { n = reduce(u128(n) * x.n); return *this; }
mod64 operator*(mod64 x) const { return mod64(*this) *= x; }
ull val() const { return reduce(n); }
};
ull mod64::mod, mod64::inv, mod64::r2;
bool suspect(ull a, ull s, ull d, ull n){
if(mod64::mod != n) mod64::set_mod(n);
mod64 x(1), xx(a), one(x), minusone(n-1);
while(d > 0){
if(d&1) x = x * xx;
xx = xx * xx;
d >>= 1;
}
if (x.n == one.n) return true;
for (int r = 0; r < s; ++r) {
if(x.n == minusone.n) return true;
x = x * x;
}
return false;
}
template<class T>
bool miller_rabin(T n){
if (n <= 1 || (n > 2 && n % 2 == 0)) return false;
ull d = n - 1, s = 0;
while (!(d&1)) {++s; d >>= 1;}
vector<uint64_t> v = {2, 325, 9375, 28178, 450775, 9780504, 1795265022};
if(n < 4759123141LL) v = {2, 7, 61};
for (auto &&p : v) {
if(p >= n) break;
if(!suspect(p, s, d, n)) return false;
}
return true;
}