This documentation is automatically generated by online-judge-tools/verification-helper
template<uint M = 1000000007>
struct modint{
uint val;
modint(): val(0){}
template<typename T>
modint(T t){t %= (T)M; if(t < 0) t += (T)M; val = t;}
modint pow(ll k) const {
modint res(1), x(val);
while(k){
if(k&1) res *= x;
x *= x;
k >>= 1;
}
return res;
}
template<typename T>
modint& operator=(T t){t %= (T)M; if(t < 0) t += (T)M; val = t; return *this; }
modint inv() const {return pow(M-2);}
modint& operator+=(modint a){ val += a.val; if(val >= M) val -= M; return *this;}
modint& operator-=(modint a){ if(val < a.val) val += M-a.val; else val -= a.val; return *this;}
modint& operator*=(modint a){ val = (ull)val*a.val%M; return *this;}
modint& operator/=(modint a){ return (*this) *= a.inv();}
modint operator+(modint a) const {return modint(val) +=a;}
modint operator-(modint a) const {return modint(val) -=a;}
modint operator*(modint a) const {return modint(val) *=a;}
modint operator/(modint a) const {return modint(val) /=a;}
modint operator-(){ return modint(M-val);}
bool operator==(const modint a) const {return val == a.val;}
bool operator!=(const modint a) const {return val != a.val;}
bool operator<(const modint a) const {return val < a.val;}
};
using mint = modint<>;
namespace FFT {
const int max_base = 20, maxN = 1 << max_base; // N <= 5e5
const double PI = acos(-1);
struct num {
double x{}, y{};
num() = default;
num(double x, double y): x(x), y(y) {}
explicit num(double r): x(cos(r)), y(sin(r)) {}
};
num operator+(num a, num b) { return {a.x + b.x, a.y + b.y}; }
num operator-(num a, num b) { return {a.x - b.x, a.y - b.y}; }
num operator*(num a, num b) { return {a.x * b.x - a.y * b.y, a.x * b.y + a.y * b.x}; }
num conj(num a) {return {a.x, -a.y}; }
num root[maxN];
int rev[maxN];
bool is_root_prepared = false;
void prepare_root(){
if(is_root_prepared) return;
is_root_prepared = true;
root[1] = num(1, 0);
for (int i = 1; i < max_base; ++i) {
num x(2*PI / (1LL << (i+1)));
for (ll j = (1LL << (i-1)); j < (1LL << (i)); ++j) {
root[2*j] = root[j];
root[2*j+1] = root[j]*x;
}
}
}
int base, N;
int lastN = -1;
void prepare_rev(){
if(lastN == N) return;
lastN = N;
for (int i = 0; i < N; ++i) rev[i] = (rev[i >> 1] >> 1) + ((i & 1) << (base - 1));
}
void fft(num *a, num *f){
for (int i = 0; i < N; ++i) f[i] = a[rev[i]];
for (int k = 1; k < N; k <<= 1) {
for (int i = 0; i < N; i += 2*k) {
for (int j = 0; j < k; ++j) {
num z = f[i+j+k]* root[j+k];
f[i+j+k] = f[i+j] - z;
f[i+j] = f[i+j] + z;
}
}
}
}
num a[maxN], b[maxN], c[maxN], f1[maxN], f2[maxN], f3[maxN];
ll A[maxN], B[maxN], C[maxN];
constexpr ll mask1 = (1LL << 11)-1, mask2 = (1LL << 22)-(1LL << 11), mask3 = (1LL << 33) - (1LL << 22);
void multi_mod(){
for (int i = 0; i < N; ++i) {
a[i] = num( A[i] & mask1, (A[i] & mask2) >> 11);
}
for (int i = 0; i < N; ++i) {
b[i] = num( B[i] & mask1, (B[i] & mask2) >> 11);
}
for (int i = 0; i < N; ++i) {
c[i] = num((A[i] & mask3) >> 22, (B[i] & mask3) >> 22);
}
fft(a, f1);
fft(b, f2);
fft(c, f3);
for (int i = 0; i < N; ++i) {
int j = (N-i)&(N-1);
num a1 = (f1[i] + conj(f1[j])) * num(0.5, 0);
num a2 = (f1[i] - conj(f1[j])) * num(0, -0.5);
num a3 = (f3[i] + conj(f3[j])) * num(0.5, 0);
num b1 = (f2[i] + conj(f2[j])) * num(0.5/N, 0);
num b2 = (f2[i] - conj(f2[j])) * num(0, -0.5/N);
num b3 = (f3[i] - conj(f3[j])) * num(0, -0.5/N);
a[j] = a1*b1 + (a1*b2 + a2*b1) * num(0, 1);
b[j] = (a1*b3 + a2*b2 + a3*b1) + (a2*b3 + a3*b2) * num(0, 1);
c[j] = a3*b3;
}
fft(a, f1);
fft(b, f2);
fft(c, f3);
for (int i = 0; i < N; ++i) {
ll k1 = f1[i].x + 0.5;
ll k2 = f1[i].y + 0.5;
ll k3 = f2[i].x + 0.5;
ll k4 = f2[i].y + 0.5;
ll k5 = f3[i].x + 0.5;
C[i] = (k1 + ((k2 + ((k3 + ((k4 + (k5 << 11) % MOD) << 11) % MOD) << 11) % MOD) << 11)) % MOD;
}
}
void prepare_AB(int n1, int n2){
base = 1;
N = 2;
while(N < n1+n2) base++, N <<= 1;
for (int i = n1; i < N; ++i) A[i] = 0;
for (int i = n2; i < N; ++i) B[i] = 0;
prepare_root();
prepare_rev();
}
void multi_mod(int n1, int n2){
prepare_AB(n1, n2);
multi_mod();
}
}
struct poly {
vector<mint> v;
poly() = default;
explicit poly(int n) : v(n) {};
explicit poly(vector<mint> vv) : v(std::move(vv)) {};
int size() const {return (int)v.size(); }
poly cut(int len){
if(len < v.size()) v.resize(static_cast<unsigned long>(len));
return *this;
}
inline mint& operator[] (int i) {return v[i]; }
poly& operator+=(const poly &a) {
this->v.resize(max(size(), a.size()));
for (int i = 0; i < a.size(); ++i) this->v[i] += a.v[i];
return *this;
}
poly& operator-=(const poly &a) {
this->v.resize(max(size(), a.size()));
for (int i = 0; i < a.size(); ++i) this->v[i] -= a.v[i];
return *this;
}
poly& operator*=(poly a) {
for (int i = 0; i < size(); ++i) FFT::A[i] = this->v[i].val;
for (int i = 0; i < a.size(); ++i) FFT::B[i] = a.v[i].val;
FFT::multi_mod(size(), a.size());
this->v.resize(size() + a.size()-1);
for (int i = 0; i < size(); ++i) this->v[i] = FFT::C[i];
return *this;
}
poly& operator/=(const poly &a){ return (*this *= a.inv()); }
poly operator+(const poly &a) const { return poly(*this) += a; }
poly operator-(const poly &a) const { return poly(*this) -= a; }
poly operator*(const poly &a) const { return poly(*this) *= a; }
poly inv() const {
int n = size();
poly r(1);
r[0] = (this->v[0]).inv();
int k = 1;
while(k < n){
k *= 2;
poly ff(k);
for (int i = 0; i < min(k, n); ++i) {
ff[i] = this->v[i];
}
poly nr = (r*r*ff).cut(k);
for (int i = 0; i < k/2; ++i) {
nr[i] = (r[i]+r[i]-nr[i]);
nr[i+k/2] = -nr[i+k/2];
}
r = nr;
}
r.v.resize(n);
return r;
}
};
#line 1 "math/fft3.cpp"
template<uint M = 1000000007>
struct modint{
uint val;
modint(): val(0){}
template<typename T>
modint(T t){t %= (T)M; if(t < 0) t += (T)M; val = t;}
modint pow(ll k) const {
modint res(1), x(val);
while(k){
if(k&1) res *= x;
x *= x;
k >>= 1;
}
return res;
}
template<typename T>
modint& operator=(T t){t %= (T)M; if(t < 0) t += (T)M; val = t; return *this; }
modint inv() const {return pow(M-2);}
modint& operator+=(modint a){ val += a.val; if(val >= M) val -= M; return *this;}
modint& operator-=(modint a){ if(val < a.val) val += M-a.val; else val -= a.val; return *this;}
modint& operator*=(modint a){ val = (ull)val*a.val%M; return *this;}
modint& operator/=(modint a){ return (*this) *= a.inv();}
modint operator+(modint a) const {return modint(val) +=a;}
modint operator-(modint a) const {return modint(val) -=a;}
modint operator*(modint a) const {return modint(val) *=a;}
modint operator/(modint a) const {return modint(val) /=a;}
modint operator-(){ return modint(M-val);}
bool operator==(const modint a) const {return val == a.val;}
bool operator!=(const modint a) const {return val != a.val;}
bool operator<(const modint a) const {return val < a.val;}
};
using mint = modint<>;
namespace FFT {
const int max_base = 20, maxN = 1 << max_base; // N <= 5e5
const double PI = acos(-1);
struct num {
double x{}, y{};
num() = default;
num(double x, double y): x(x), y(y) {}
explicit num(double r): x(cos(r)), y(sin(r)) {}
};
num operator+(num a, num b) { return {a.x + b.x, a.y + b.y}; }
num operator-(num a, num b) { return {a.x - b.x, a.y - b.y}; }
num operator*(num a, num b) { return {a.x * b.x - a.y * b.y, a.x * b.y + a.y * b.x}; }
num conj(num a) {return {a.x, -a.y}; }
num root[maxN];
int rev[maxN];
bool is_root_prepared = false;
void prepare_root(){
if(is_root_prepared) return;
is_root_prepared = true;
root[1] = num(1, 0);
for (int i = 1; i < max_base; ++i) {
num x(2*PI / (1LL << (i+1)));
for (ll j = (1LL << (i-1)); j < (1LL << (i)); ++j) {
root[2*j] = root[j];
root[2*j+1] = root[j]*x;
}
}
}
int base, N;
int lastN = -1;
void prepare_rev(){
if(lastN == N) return;
lastN = N;
for (int i = 0; i < N; ++i) rev[i] = (rev[i >> 1] >> 1) + ((i & 1) << (base - 1));
}
void fft(num *a, num *f){
for (int i = 0; i < N; ++i) f[i] = a[rev[i]];
for (int k = 1; k < N; k <<= 1) {
for (int i = 0; i < N; i += 2*k) {
for (int j = 0; j < k; ++j) {
num z = f[i+j+k]* root[j+k];
f[i+j+k] = f[i+j] - z;
f[i+j] = f[i+j] + z;
}
}
}
}
num a[maxN], b[maxN], c[maxN], f1[maxN], f2[maxN], f3[maxN];
ll A[maxN], B[maxN], C[maxN];
constexpr ll mask1 = (1LL << 11)-1, mask2 = (1LL << 22)-(1LL << 11), mask3 = (1LL << 33) - (1LL << 22);
void multi_mod(){
for (int i = 0; i < N; ++i) {
a[i] = num( A[i] & mask1, (A[i] & mask2) >> 11);
}
for (int i = 0; i < N; ++i) {
b[i] = num( B[i] & mask1, (B[i] & mask2) >> 11);
}
for (int i = 0; i < N; ++i) {
c[i] = num((A[i] & mask3) >> 22, (B[i] & mask3) >> 22);
}
fft(a, f1);
fft(b, f2);
fft(c, f3);
for (int i = 0; i < N; ++i) {
int j = (N-i)&(N-1);
num a1 = (f1[i] + conj(f1[j])) * num(0.5, 0);
num a2 = (f1[i] - conj(f1[j])) * num(0, -0.5);
num a3 = (f3[i] + conj(f3[j])) * num(0.5, 0);
num b1 = (f2[i] + conj(f2[j])) * num(0.5/N, 0);
num b2 = (f2[i] - conj(f2[j])) * num(0, -0.5/N);
num b3 = (f3[i] - conj(f3[j])) * num(0, -0.5/N);
a[j] = a1*b1 + (a1*b2 + a2*b1) * num(0, 1);
b[j] = (a1*b3 + a2*b2 + a3*b1) + (a2*b3 + a3*b2) * num(0, 1);
c[j] = a3*b3;
}
fft(a, f1);
fft(b, f2);
fft(c, f3);
for (int i = 0; i < N; ++i) {
ll k1 = f1[i].x + 0.5;
ll k2 = f1[i].y + 0.5;
ll k3 = f2[i].x + 0.5;
ll k4 = f2[i].y + 0.5;
ll k5 = f3[i].x + 0.5;
C[i] = (k1 + ((k2 + ((k3 + ((k4 + (k5 << 11) % MOD) << 11) % MOD) << 11) % MOD) << 11)) % MOD;
}
}
void prepare_AB(int n1, int n2){
base = 1;
N = 2;
while(N < n1+n2) base++, N <<= 1;
for (int i = n1; i < N; ++i) A[i] = 0;
for (int i = n2; i < N; ++i) B[i] = 0;
prepare_root();
prepare_rev();
}
void multi_mod(int n1, int n2){
prepare_AB(n1, n2);
multi_mod();
}
}
struct poly {
vector<mint> v;
poly() = default;
explicit poly(int n) : v(n) {};
explicit poly(vector<mint> vv) : v(std::move(vv)) {};
int size() const {return (int)v.size(); }
poly cut(int len){
if(len < v.size()) v.resize(static_cast<unsigned long>(len));
return *this;
}
inline mint& operator[] (int i) {return v[i]; }
poly& operator+=(const poly &a) {
this->v.resize(max(size(), a.size()));
for (int i = 0; i < a.size(); ++i) this->v[i] += a.v[i];
return *this;
}
poly& operator-=(const poly &a) {
this->v.resize(max(size(), a.size()));
for (int i = 0; i < a.size(); ++i) this->v[i] -= a.v[i];
return *this;
}
poly& operator*=(poly a) {
for (int i = 0; i < size(); ++i) FFT::A[i] = this->v[i].val;
for (int i = 0; i < a.size(); ++i) FFT::B[i] = a.v[i].val;
FFT::multi_mod(size(), a.size());
this->v.resize(size() + a.size()-1);
for (int i = 0; i < size(); ++i) this->v[i] = FFT::C[i];
return *this;
}
poly& operator/=(const poly &a){ return (*this *= a.inv()); }
poly operator+(const poly &a) const { return poly(*this) += a; }
poly operator-(const poly &a) const { return poly(*this) -= a; }
poly operator*(const poly &a) const { return poly(*this) *= a; }
poly inv() const {
int n = size();
poly r(1);
r[0] = (this->v[0]).inv();
int k = 1;
while(k < n){
k *= 2;
poly ff(k);
for (int i = 0; i < min(k, n); ++i) {
ff[i] = this->v[i];
}
poly nr = (r*r*ff).cut(k);
for (int i = 0; i < k/2; ++i) {
nr[i] = (r[i]+r[i]-nr[i]);
nr[i+k/2] = -nr[i+k/2];
}
r = nr;
}
r.v.resize(n);
return r;
}
};