This documentation is automatically generated by online-judge-tools/verification-helper
#include "../util/modint.cpp"
class Factorial {
vector<mint> facts, factinv;
public:
explicit Factorial(int n) : facts(n+1), factinv(n+1) {
facts[0] = 1;
for (int i = 1; i < n+1; ++i) facts[i] = facts[i-1] * mint(i);
factinv[n] = facts[n].inv();
for (int i = n-1; i >= 0; --i) factinv[i] = factinv[i+1] * mint(i+1);
}
mint fact(int k) const {
if(k >= 0) return facts[k]; else return factinv[-k];
}
mint operator[](const int &k) const {
if(k >= 0) return facts[k]; else return factinv[-k];
}
mint C(int p, int q) const {
if(q < 0 || p < q) return 0;
return facts[p] * factinv[q] * factinv[p-q];
}
mint P(int p, int q) const {
if(q < 0 || p < q) return 0;
return facts[p] * factinv[p-q];
}
mint H(int p, int q) const {
if(p < 0 || q < 0) return 0;
return q == 0 ? 1 : C(p+q-1, q);
}
};
#line 1 "util/modint.cpp"
template <uint M>
struct modint {
uint val;
public:
static modint raw(int v) { modint x; x.val = v; return x; }
modint() : val(0) {}
template <class T>
modint(T v) { ll x = (ll)(v%(ll)(M)); if (x < 0) x += M; val = uint(x); }
modint(bool v) { val = ((unsigned int)(v) % M); }
modint& operator++() { val++; if (val == M) val = 0; return *this; }
modint& operator--() { if (val == 0) val = M; val--; return *this; }
modint operator++(int) { modint result = *this; ++*this; return result; }
modint operator--(int) { modint result = *this; --*this; return result; }
modint& operator+=(const modint& b) { val += b.val; if (val >= M) val -= M; return *this; }
modint& operator-=(const modint& b) { val -= b.val; if (val >= M) val += M; return *this; }
modint& operator*=(const modint& b) { ull z = val; z *= b.val; val = (uint)(z % M); return *this; }
modint& operator/=(const modint& b) { return *this = *this * b.inv(); }
modint operator+() const { return *this; }
modint operator-() const { return modint() - *this; }
modint pow(long long n) const { modint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; }
modint inv() const { return pow(M-2); }
friend modint operator+(const modint& a, const modint& b) { return modint(a) += b; }
friend modint operator-(const modint& a, const modint& b) { return modint(a) -= b; }
friend modint operator*(const modint& a, const modint& b) { return modint(a) *= b; }
friend modint operator/(const modint& a, const modint& b) { return modint(a) /= b; }
friend bool operator==(const modint& a, const modint& b) { return a.val == b.val; }
friend bool operator!=(const modint& a, const modint& b) { return a.val != b.val; }
};
using mint = modint<MOD>;
/**
* @brief modint(固定MOD)
* @docs _md/modint.md
*/
#line 2 "math/factorial.cpp"
class Factorial {
vector<mint> facts, factinv;
public:
explicit Factorial(int n) : facts(n+1), factinv(n+1) {
facts[0] = 1;
for (int i = 1; i < n+1; ++i) facts[i] = facts[i-1] * mint(i);
factinv[n] = facts[n].inv();
for (int i = n-1; i >= 0; --i) factinv[i] = factinv[i+1] * mint(i+1);
}
mint fact(int k) const {
if(k >= 0) return facts[k]; else return factinv[-k];
}
mint operator[](const int &k) const {
if(k >= 0) return facts[k]; else return factinv[-k];
}
mint C(int p, int q) const {
if(q < 0 || p < q) return 0;
return facts[p] * factinv[q] * factinv[p-q];
}
mint P(int p, int q) const {
if(q < 0 || p < q) return 0;
return facts[p] * factinv[p-q];
}
mint H(int p, int q) const {
if(p < 0 || q < 0) return 0;
return q == 0 ? 1 : C(p+q-1, q);
}
};