This documentation is automatically generated by online-judge-tools/verification-helper
単一始点最短路を求める。負辺があると正しく動作しない。 $O(V \log E)$
template <typename T>
struct edge {
int from, to; T cost;
edge(int to, T cost) : from(-1), to(to), cost(cost) {}
edge(int from, int to, T cost) : from(from), to(to), cost(cost) {}
};
#include "../datastructure/radixheap.cpp"
template <typename T>
vector<T> dijkstra(int s,vector<vector<edge<T>>> &G){
auto n = G.size();
vector<T> d(n, INF<T>);
RadixHeap<ll, int> Q;
d[s] = 0;
Q.emplace(0, s);
while(!Q.empty()){
T cost; int i;
tie(cost, i) = Q.top(); Q.pop();
if(d[i] < cost) continue;
for (auto &&e : G[i]) {
auto cost2 = cost + e.cost;
if(d[e.to] <= cost2) continue;
d[e.to] = cost2;
Q.emplace(d[e.to], e.to);
}
}
return d;
}
/**
* @brief Dijkstra法(Radix Heap)
* @docs _md/dijkstra.md
*/
#line 1 "graph/dijkstra_radix_heap.cpp"
template <typename T>
struct edge {
int from, to; T cost;
edge(int to, T cost) : from(-1), to(to), cost(cost) {}
edge(int from, int to, T cost) : from(from), to(to), cost(cost) {}
};
#line 1 "datastructure/radixheap.cpp"
template <class K, class V>
class RadixHeap {
static constexpr int bit_length = sizeof(K)*8;
K last;
size_t sz, cnt;
array<vector<pair<K, V>>, bit_length> v;
static inline int bsr(int x){
return x ? bit_length-__builtin_clz(x) : 0;
}
static inline int bsr(ll x){
return x ? bit_length-__builtin_clzll(x) : 0;
}
void pull() {
if(cnt < v[0].size()) return;;
int i = 1;
while(v[i].empty()) i++;
last = min_element(v[i].begin(),v[i].end())->first;
for (auto &&x : v[i]) v[bsr(x.first ^ last)].push_back(x);
v[i].clear();
}
public:
RadixHeap() : last(0), sz(0), cnt(0) {}
void emplace(K x, V val){
sz++;
v[bsr(x^last)].emplace_back(x, val);
}
pair<K, V> top() {
pull();
return v[0][cnt];
}
void pop() {
pull();
sz--;
cnt++;
}
size_t size() const { return sz; }
bool empty() const { return !sz; }
};
#line 9 "graph/dijkstra_radix_heap.cpp"
template <typename T>
vector<T> dijkstra(int s,vector<vector<edge<T>>> &G){
auto n = G.size();
vector<T> d(n, INF<T>);
RadixHeap<ll, int> Q;
d[s] = 0;
Q.emplace(0, s);
while(!Q.empty()){
T cost; int i;
tie(cost, i) = Q.top(); Q.pop();
if(d[i] < cost) continue;
for (auto &&e : G[i]) {
auto cost2 = cost + e.cost;
if(d[e.to] <= cost2) continue;
d[e.to] = cost2;
Q.emplace(d[e.to], e.to);
}
}
return d;
}
/**
* @brief Dijkstra法(Radix Heap)
* @docs _md/dijkstra.md
*/