This documentation is automatically generated by online-judge-tools/verification-helper
あとで書く
template<typename F, typename C>
struct PrimalDual {
struct edge {
int to; F cap; C cost; int rev;
edge() = default;
edge(int to, F cap, C cost, int rev):to(to), cap(cap), cost(cost), rev(rev) {};
};
vector<vector<edge>> G;
vector<C> potential, min_cost;
vector<int> prevv, preve;
explicit PrimalDual(int n) : G(n), potential(n), min_cost(n), prevv(n), preve(n) {}
void add_edge(int u, int v, F cap, C cost){
G[u].emplace_back(v, cap, cost, G[v].size());
G[v].emplace_back(u, 0, -cost, G[u].size()-1);
}
struct P{
C first; int second;
P(C first,int second):first(first),second(second){}
bool operator<(const P&a) const{return a.first<first;}
};
void dijkstra(int s){
priority_queue<P> Q;
fill(min_cost.begin(),min_cost.end(), INF<C>);
min_cost[s] = 0;
Q.emplace(0, s);
while(!Q.empty()){
P p = Q.top(); Q.pop();
int v = p.second;
if(min_cost[v] < p.first) continue;
for(int i = 0; i < G[v].size(); ++i){
edge &e=G[v][i];
if(e.cap==0) continue;
if(min_cost[v]+e.cost+potential[v]-potential[e.to] < min_cost[e.to]){
min_cost[e.to] = min_cost[v]+e.cost+potential[v]-potential[e.to];
prevv[e.to] = v;
preve[e.to] = i;
Q.emplace(min_cost[e.to], e.to);
}
}
}
}
C flow(int s, int t, F fl, int &ok){
C res = 0;
fill(potential.begin(),potential.end(), 0);
while(fl > 0){
dijkstra(s);
if(min_cost[t] == INF<C>){
ok = 0;
return res;
}
for (int i = 0; i < potential.size(); ++i) {
if(min_cost[i] < INF<C>) potential[i] += min_cost[i];
}
F d = fl;
for(int v = t; v != s; v = prevv[v]){
d = min(d, G[prevv[v]][preve[v]].cap);
}
fl -= d;
res += potential[t]*d;
for(int v = t; v != s; v = prevv[v]){
G[prevv[v]][preve[v]].cap -= d;
G[v][G[prevv[v]][preve[v]].rev].cap += d;
}
}
ok = 1;
return res;
}
};
/**
* @brief 最小費用流(primal-dual)
* @docs _md/primaldual.md
*/
#line 1 "flow/primaldual.cpp"
template<typename F, typename C>
struct PrimalDual {
struct edge {
int to; F cap; C cost; int rev;
edge() = default;
edge(int to, F cap, C cost, int rev):to(to), cap(cap), cost(cost), rev(rev) {};
};
vector<vector<edge>> G;
vector<C> potential, min_cost;
vector<int> prevv, preve;
explicit PrimalDual(int n) : G(n), potential(n), min_cost(n), prevv(n), preve(n) {}
void add_edge(int u, int v, F cap, C cost){
G[u].emplace_back(v, cap, cost, G[v].size());
G[v].emplace_back(u, 0, -cost, G[u].size()-1);
}
struct P{
C first; int second;
P(C first,int second):first(first),second(second){}
bool operator<(const P&a) const{return a.first<first;}
};
void dijkstra(int s){
priority_queue<P> Q;
fill(min_cost.begin(),min_cost.end(), INF<C>);
min_cost[s] = 0;
Q.emplace(0, s);
while(!Q.empty()){
P p = Q.top(); Q.pop();
int v = p.second;
if(min_cost[v] < p.first) continue;
for(int i = 0; i < G[v].size(); ++i){
edge &e=G[v][i];
if(e.cap==0) continue;
if(min_cost[v]+e.cost+potential[v]-potential[e.to] < min_cost[e.to]){
min_cost[e.to] = min_cost[v]+e.cost+potential[v]-potential[e.to];
prevv[e.to] = v;
preve[e.to] = i;
Q.emplace(min_cost[e.to], e.to);
}
}
}
}
C flow(int s, int t, F fl, int &ok){
C res = 0;
fill(potential.begin(),potential.end(), 0);
while(fl > 0){
dijkstra(s);
if(min_cost[t] == INF<C>){
ok = 0;
return res;
}
for (int i = 0; i < potential.size(); ++i) {
if(min_cost[i] < INF<C>) potential[i] += min_cost[i];
}
F d = fl;
for(int v = t; v != s; v = prevv[v]){
d = min(d, G[prevv[v]][preve[v]].cap);
}
fl -= d;
res += potential[t]*d;
for(int v = t; v != s; v = prevv[v]){
G[prevv[v]][preve[v]].cap -= d;
G[v][G[prevv[v]][preve[v]].rev].cap += d;
}
}
ok = 1;
return res;
}
};
/**
* @brief 最小費用流(primal-dual)
* @docs _md/primaldual.md
*/