This documentation is automatically generated by online-judge-tools/verification-helper
template <class M>
struct LazySegmentTree{
using T = typename M::T;
using L = typename M::L;
int sz, n, height{};
vector<T> seg; vector<L> lazy;
explicit LazySegmentTree(int n) : n(n) {
sz = 1; while(sz < n) sz <<= 1, height++;
seg.assign(2*sz, M::e());
lazy.assign(2*sz, M::l());
}
void set(int k, const T &x){ seg[k + sz] = x; }
void build(){
for (int i = sz-1; i > 0; --i) seg[i] = M::f(seg[i<<1], seg[(i<<1)|1]);
}
T reflect(int k){ return lazy[k] == M::l() ? seg[k] : M::g(seg[k], lazy[k]); }
void eval(int k){
if(lazy[k] == M::l()) return;
if(k < sz){
lazy[(k<<1)|0] = M::h(lazy[(k<<1)|0], lazy[k]);
lazy[(k<<1)|1] = M::h(lazy[(k<<1)|1], lazy[k]);
}
seg[k] = reflect(k);
lazy[k] = M::l();
}
void thrust(int k){ for (int i = height; i; --i) eval(k>>i); }
void recalc(int k) { while(k >>= 1) seg[k] = M::f(reflect((k<<1)|0), reflect((k<<1)|1));}
void update(int a, const T &x){
thrust(a += sz);
seg[a] = x;
recalc(a);
}
void update(int a, int b, const L &x){
thrust(a += sz); thrust(b += sz-1);
for (int l = a, r = b+1;l < r; l >>=1, r >>= 1) {
if(l&1) lazy[l] = M::h(lazy[l], x), l++;
if(r&1) --r, lazy[r] = M::h(lazy[r], x);
}
recalc(a);
recalc(b);
}
T query(int a, int b){ // [l, r)
thrust(a += sz);
thrust(b += sz-1);
T ll = M::e(), rr = M::e();
for(int l = a, r = b+1; l < r; l >>=1, r>>=1) {
if (l & 1) ll = M::f(ll, reflect(l++));
if (r & 1) rr = M::f(reflect(--r), rr);
}
return M::f(ll, rr);
}
template<class F>
int search_right(int l, F cond){
if(l == n) return n;
thrust(l += sz);
T val = M::e();
do {
while(!(l&1)) l >>= 1;
if(!cond(M::f(val, seg[l]))){
while(l < sz) {
eval(l); l <<= 1;
if (cond(M::f(val, reflect(l)))){
val = M::f(val, reflect(l++));
}
}
return l - sz;
}
val = M::f(val, reflect(l++));
} while((l & -l) != l);
return n;
}
template<class F>
int search_left(int r, F cond){
if(r <= 0) return 0;
thrust((r += sz)-1);
T val = M::e();
do {
r--;
while(r > 1 && r&1) r >>= 1;
if(!cond(M::f(reflect(r), val))){
while(r < sz) {
eval(r);
r = ((r << 1)|1);
if (cond(M::f(reflect(r), val))){
val = M::f(reflect(r--), val);
}
}
return r + 1 - sz;
}
val = M::f(reflect(r), val);
} while((r & -r) != r);
return 0;
}
};
/*
struct Monoid{
using T = array<mint, 2>;
using L = array<mint, 2>;
static T f(T a, T b) { return {a[0]+b[0], a[1]+b[1]}; }
static T g(T a, L b) {
return {a[0] * b[0] + a[1] * b[1], a[1]};
}
static L h(L a, L b) {
return {a[0]*b[0], a[1]*b[0]+b[1]};
}
static T e() { return {0, 0}; }
static L l() { return {1, 0}; }
};
*/
#line 1 "datastructure/lazysegtree.cpp"
template <class M>
struct LazySegmentTree{
using T = typename M::T;
using L = typename M::L;
int sz, n, height{};
vector<T> seg; vector<L> lazy;
explicit LazySegmentTree(int n) : n(n) {
sz = 1; while(sz < n) sz <<= 1, height++;
seg.assign(2*sz, M::e());
lazy.assign(2*sz, M::l());
}
void set(int k, const T &x){ seg[k + sz] = x; }
void build(){
for (int i = sz-1; i > 0; --i) seg[i] = M::f(seg[i<<1], seg[(i<<1)|1]);
}
T reflect(int k){ return lazy[k] == M::l() ? seg[k] : M::g(seg[k], lazy[k]); }
void eval(int k){
if(lazy[k] == M::l()) return;
if(k < sz){
lazy[(k<<1)|0] = M::h(lazy[(k<<1)|0], lazy[k]);
lazy[(k<<1)|1] = M::h(lazy[(k<<1)|1], lazy[k]);
}
seg[k] = reflect(k);
lazy[k] = M::l();
}
void thrust(int k){ for (int i = height; i; --i) eval(k>>i); }
void recalc(int k) { while(k >>= 1) seg[k] = M::f(reflect((k<<1)|0), reflect((k<<1)|1));}
void update(int a, const T &x){
thrust(a += sz);
seg[a] = x;
recalc(a);
}
void update(int a, int b, const L &x){
thrust(a += sz); thrust(b += sz-1);
for (int l = a, r = b+1;l < r; l >>=1, r >>= 1) {
if(l&1) lazy[l] = M::h(lazy[l], x), l++;
if(r&1) --r, lazy[r] = M::h(lazy[r], x);
}
recalc(a);
recalc(b);
}
T query(int a, int b){ // [l, r)
thrust(a += sz);
thrust(b += sz-1);
T ll = M::e(), rr = M::e();
for(int l = a, r = b+1; l < r; l >>=1, r>>=1) {
if (l & 1) ll = M::f(ll, reflect(l++));
if (r & 1) rr = M::f(reflect(--r), rr);
}
return M::f(ll, rr);
}
template<class F>
int search_right(int l, F cond){
if(l == n) return n;
thrust(l += sz);
T val = M::e();
do {
while(!(l&1)) l >>= 1;
if(!cond(M::f(val, seg[l]))){
while(l < sz) {
eval(l); l <<= 1;
if (cond(M::f(val, reflect(l)))){
val = M::f(val, reflect(l++));
}
}
return l - sz;
}
val = M::f(val, reflect(l++));
} while((l & -l) != l);
return n;
}
template<class F>
int search_left(int r, F cond){
if(r <= 0) return 0;
thrust((r += sz)-1);
T val = M::e();
do {
r--;
while(r > 1 && r&1) r >>= 1;
if(!cond(M::f(reflect(r), val))){
while(r < sz) {
eval(r);
r = ((r << 1)|1);
if (cond(M::f(reflect(r), val))){
val = M::f(reflect(r--), val);
}
}
return r + 1 - sz;
}
val = M::f(reflect(r), val);
} while((r & -r) != r);
return 0;
}
};
/*
struct Monoid{
using T = array<mint, 2>;
using L = array<mint, 2>;
static T f(T a, T b) { return {a[0]+b[0], a[1]+b[1]}; }
static T g(T a, L b) {
return {a[0] * b[0] + a[1] * b[1], a[1]};
}
static L h(L a, L b) {
return {a[0]*b[0], a[1]*b[0]+b[1]};
}
static T e() { return {0, 0}; }
static L l() { return {1, 0}; }
};
*/